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Abstract. Take a hexahedral mesh and an adjoining tetrahedral mesh that splits each boundary quadrilateral into
two triangles. Separate the meshes with a buffer layer of hexes. Dice the original hexes into eight, and the tetrahedra
into four hexahedra. Then I show that the buffer layer hexes can be filled with the geode-template, creating a
conforming all-hex mesh of the entire model. The geode-template is composed of 26 hexahedra. The hexahedra have
acceptable quality, depending on the geometry of the buffer layer. The method used to generate the geode-template
is general, based on interleaving completed dual surfaces, and might be extended to other transition problems.
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1. Introduction

For some FEM calculations, hexahedral meshes are preferred to tetrahedral meshes. However, for a geometrically
complicated domain, automatically generating a hexahedral mesh is much more difficult than generating a tetrahedral
mesh. A hexahedral mesh can always be obtained from a tetrahedral mesh by dicing, dividing each tetrahedra into four
hexahedra, but the resultant mesh quality is relatively poor.

At Sandia National Laboratories, SNL, we often want to analyze models composed of hundreds of simple parts,
arranged together in a complicated way. In many models, there is a potting material surrounding these parts whose
geometry is the complement of the union of the other parts. This potting material is often the most difficult to mesh,
but the least interesting to the analyst. Also, at SNL and in industry, we commonly have a complicated part that may
be mostly decomposed into simple pieces, with one or two difficult nuggets remaining. The mesh of the entire model
should be conforming, that is, the mesh should be a simplicial complex, with elements meeting face-to-face, edge-to-
edge, and node-to-node.

For these scenarios, a reasonable solution is to first (automatically) mesh the simple or important parts with high-
quality hexahedra, then automatically mesh the complicated or unimportant parts with tetrahedra. On the surfaces
between hex-parts and tet-parts the quads can be divided into two triangles; many Delaunay-based tetrahedral meshers
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Figure 1. The all-hex geode-template: Left, the diced tet and hex interface; middle, the heart of the geode; right, the boundary
of the template.



can generate a tet mesh that conforms to these triangles. Hence the tetrahedral and hexahedral meshes will conform
node-wise, but each quadrilateral will have a diagonal edge cutting it into two triangles.

The problem is what to do with this non-conforming interface. One solution is tied contacts, modifying the analysis
software to handle a non-conforming mesh by interpolating between intermediate FEM solutions along the interface.
Besides complicating the software, in some situations the running time and analysis errors are unacceptably high.
Another solution is to introduce square pyramid elements. The interface is now conforming, but again the analysis code
must be modified, this time to handle square pyramid elements; many SNL analysis codes do not even support the
more common tetrahedral elements.

In this paper I propose a new solution which generates a conforming mesh for the entire model composed entirely of
hexahedra. First, the tetrahedral mesh is geometrically shrunk away from its interface with the hex mesh, creating a
boundary layer of hexahedra. (The boundary layer could be created before the tet-mesh. Note that for some interface
geometries, e.g. Figure 9 right, shrinking is impossible.) Each hex of the boundary layer has the same structure: the
top quadrilateral face is shared with the tet mesh and divided into two triangles, the opposite bottom face is shared with
the hex mesh, and the remaining four side faces are shared with other hexes of the boundary layer.

Second, the hexahedral mesh outside the boundary layer is diced by dividing each hex into 8, and the tetrahedral mesh
inside the layer is diced into hexes. Boundary layer “hexes” now have six quads on the diced-tet-mesh interface and
four quads on the diced-hex-mesh interface. Third, each boundary layer hex is filled in with the geode-template, which
is composed of 26 hexahedra and conforms to the diced meshes. Each of the four side faces have the same quad mesh,
so templates match up and the entire mesh is conforming.

There are several options and applications: The entirety of a solid-model part need not be meshed with tetrahedra. For
example, Plastering could fill much of the volume, and tet-meshing fill only the remaining voids; see Meyers[4] and
Tuchinsky[11]. There are a number of issues related to tool infrastructure and finding good geometric positions for the
boundary layer as well.[10] Finding a hex-template for slightly different situations has been studied for some time. The
most famous instance is Schneiders’s open problem, which has an interesting history and is accessible from the web.[9]
Two template problems with similar structure arise in Eppstein’s hex-mesh existence proof.[1]

The method of generating the geode-template is general and could be extended to other transition problems. The
method is based on the Spatial Twist Continuum, STC [6][7], the surface arrangement dual to a hex mesh. In particular,
it is based on a new form of Whisker Weaving’s sheet (surface) moving[2]: First I create a completion of the STC of
the diced tet mesh, then a separate completion of the STC of the diced hex mesh. I then push these two arrangements
together so that they intersect, combining the STCs. Dualize the combined STC creates the hexes of the geode-
template.

The advantage of the geode-template is that all-hex meshing is automated and analysis codes do not need to be
modified. One drawback is that the element count is high because of the dicing step. Also, the quality of the worst-
element is probably worse than in a diced-tet-mesh of the entire model. This is offset by the geode-template allowing
excellent-quality structured meshes in areas of interest.

The remainder of this paper is organized as follows. Section 2 describes the general transition method used to create
geode-templates. Section 3 describes the hexes of the geode-template and comments on mesh quality. Section 4
presents some preliminary examples of models meshed with the geode algorithm. I discuss in section 5 extending the
geode-template construction method, and conjecture why filling certain other hex-templates is difficult. Section 6
presents conclusions. Appendix A summarizes node-position and hex-connectivity for those wishing to reconstruct the
geode-template.



2. General Transition Method

In this section I describe a general method for making two adjacent meshes conform by dicing them and inserting a
transition layer. First, in section 2.1, I illustrate the process when the two adjacent meshes arise from a triangular mesh
adjacent to a quadrilateral mesh, the two-dimensional geode-template. In section 2.2 I describe the construction of the
three-dimensional geode-template.

2.1 Two-dimensional Geode-Template Construction

The two dimensional version of the conforming transition problem is trivial: The 1-dimensional elements, edges, are
the same in triangular and quadrilateral meshes, so they already conform. In three-dimensions, the interface is non-
conforming: Each interface-quad is subdivided into two triangles. Carrying out the geode-formation process in two-
dimensions aids in understanding the three-dimensional case.

First, I separate the interface between the triangular and quad mesh. This means topologically splitting the shared
nodes and edges into two, and geometrically shrinking the triangular mesh away from the quad mesh; see Figure 2.
(Alternatively, the interface could be separated before the triangular mesh is generated.)

Second, I dice the meshes, then complete the dual curves for each diced mesh separately; see Figure 3. Dicing the
triangular mesh is necessary in order to convert triangles into quads. More subtly, dicing both meshes ensures that the
dual curves can be completed in pairs. I join the two curves that arise from dicing an interface quad. Note that the dual
of a diced triangular mesh is composed of circular curves, except where the interface interrupts it. For the triangular
mesh I join curves to complete these circles: For a node N of the original triangular mesh on the interface, it has two
original interface edges, E1 and E2. Each interface edge gets diced in two, creating E11, E12, E21, and E22 in order. I
join the ends of the curves dual to E11 and E22, the diced edges not containing N, as in Figure 3.

Figure  2. First, the interface is separated. In these pictures the meshes are structured, but both meshes can be unstructured.

Figure 3. Second, left, the triangular and quadrilateral meshes are diced and the dual curves constructed. Right, the STCs are
then completed for each mesh separately.
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Third, I push the completed duals together so that they overlap; see Figure 4. Dualizing creates the primal mesh.

2.2 Three-dimensional Geode-Template Construction

The same principles used in constructing the two-dimensional geode-template apply to the three-dimensional case.
The main difference is the structure of the completed STCs. Instead of just completing curves, I must complete
surfaces. For the hexahedral mesh, its interface mesh is composed of quads. The dual curves of the interface mesh are
closed curves. Dicing converts each curve into two identical, parallel copies. I complete the diced hex mesh dual by
making a tunnel surface for each parallel pair. Note that at each pre-diced quad, two tunnels pass through each other;
see Figure 5. Since the arrangement must be in general position in order to dualize to a hexahedral mesh[5], I must
chose which tunnel’s roof is higher than the other. The choice is arbitrary; there does not need to be any consistency
between neighboring pre-diced quads. But this does introduce an asymmetry within the template.

For the tetrahedral mesh, its interface mesh is composed of triangles. Dicing produces circle-curves on the interface[6],
see Figure 3. I complete these circles into spheres; see Figure 6. Considering a section of the surfaces above a pre-diced

Figure  4. Left, the completed duals are pushed together so that they overlap. Right shows the resulting primal mesh.

Figure 5. A local view of the completed dual surfaces for the diced hexahedral mesh. Right and left, the bottom four quadri-
laterals are the diced hex interface mesh. Center, the quads have been removed and the tunnels turned upside-down. I use cyl-
inders of different radii only to illustrate that one tunnel locally passes below the other; topologically, the tunnels always
match up exactly with tunnels of neighboring templates.

pocket



quad, note that two of the completed circles intersect in a curve that starts and ends on two quads of the diced triangular
mesh.

I now push the completed duals together. I can choose how far to overlap the duals. There are two key features of my
choice: First, the two points where three diced-tet surfaces intersect, as in Figure 6 bottom left, lie inside both tunnels,
the pocket in Figure 5 center. Second, each of the curves of intersection between two diced-tet surfaces, except the
curve that starts and ends on the interface mesh, exit the side of the template inside one of the arch-like tunnel
entrances, so that the side of the three-dimensional template looks like the two-dimensional template as in Figure 4 or
Figure 1 center. See Figure 7 for views of the entire arrangement.

I am fortunate that the arrangement dualizes to a well-defined hexahedral mesh, with no degenerate elements, without
any fix-ups[5][2] needed. The next section discusses the geode-templates hex structure and quality.

Figure  6. The completed dual surfaces for the diced tetrahedral mesh.
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3. Geode-Template Hexes

3.1 Hex Structure

Since the mesh is highly-unstructured, the traditional views of layers through z-planes are not very informative.
Removing hexes from the outside-in is slightly better, such as Figure 1 center. The most useful static views I have
found are hex layers dual to each surface of the STC. Note that the layers from the diced-hex-mesh and the diced-tet-
mesh intersect, but the layers are separate. Each tunnel is radially symmetric about a vertical line through the center
of the template. To truly understand the hexes of the template, I suggest creating a computer model, or even better a
physical toothpick or pipe-cleaner model, based on Appendix A. An interesting feature is that in these models the
hexes appear to rotate by 45 degrees when travelling from the diced-triangle top to the diced-quad bottom.

3.2 Mesh Quality

The quality of the geode-template obviously depends on the shape of the buffer layer. The best-quality hexes appear
to be achieved with a short geode template. This is serendipitous, since it means that the buffer layer can be thin. Let
the scaled jacobian at a node of a hex be defined as the triple product of the vectors along the three edges of the node,
divided by the product of the lengths of the vectors. The scaled jacobian for a hex is the minimum scaled jacobian
among its nodes. For a geode-template inside a rectangular parallelepiped with a square base of length 24 and height
14, and nodes positioned with optimized-jacobian based smoothing[3], the scaled jacobian ranges from 0.26 to 0.53.

Figure 7. The total arrangement of the pushed-together diced-tet and diced-hex completed duals. Note that looking into the
entrance of the higher tunnel is different than looking into the entrance of the lower tunnel; compare the lower left of the fig-
ure with the lower right.
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A complete quality summary follows in Table 1, “CUBIT quality report for a 24 x 14 x 24 geode-template.” Quality
measures are defined in Robinson.[8]

4. Examples

This section gives some preliminary examples of meshes created in CUBIT with the geode-algorithm.[10] This
algorithm blends the geode-template with MSC’s ARIES tet mesher and CUBIT’s Plastering[4] hex-dominant mesher.
As algorithms for positioning nodes mature I expect mesh-quality to increase.

The first example is from Clay Fulcher; see Figure 8. It consists of a simple geometry, a cube, but with imprinted
circles of different sizes on three sides that prevent 2.5-dimensional meshing and make it difficult to decompose. This
nugget is surrounded by large, sweepable parts. The geode algorithm successfully produces an all-hex mesh.

In Fulcher’s example I place the transition layer directly on the geometry, without Plastering any of the volume. This
produces 6864 geode-template hexes, with worst scaled-jacobian 0.017 and worst aspect ratio 11. There are 6140
diced-tet hexes, with worst scaled-jacobian 0.038 and worst aspect ratio 10.

Table 1: CUBIT quality report for a 24 x 14 x 24 geode-template.

Quality Measure Average Std. Dev. Minimum Maximum

Aspect Ratio 1.75 0.55 1.07 3.07

Skew 0.54 0.16 0.17 0.76

Taper 0.30 0.13 0.038 0.76

Element Volume 300 223 97 786

Stretch 0.41 0.13 0.25 0.63

Diagonal Ratio 0.53 0.09 0.38 0.74

Dimension 3.19 0.94 1.97 5.00

Jacobian 69.9 44 26 164

Scaled Jacobian 0.34 0.09 0.26 0.53

Figure 8. The frontal (left) and cut-away (right) view of Clay Fulcher’s problem after dicing. Despite the simple geometry, a
highly-unstructured hex-mesh is necessary.



The next example is the square pyramid of Schneiders’s open problem; see Figure 11. There are 512 hexes, with worst
scaled-jacobian 0.033 and worst aspect ratio 9.4. I chose this example to be cute; I’m filling the pyramid transition
element with the geode transition template. The geode-template solution probably does not have any practical value
and does not solve the open problem because dicing is required.

Another type of example that would demonstrate the geode-template’s utility is the cube-complement of a collection
of simple parts. I could also allow Plastering to fill part of Fulcher’s model. At the time of this writing I can reliably
generate “meshes” for examples such as these, but I can not automatically get good-quality nodal positions. In many
cases I have been able to get good quality meshes by positioning nodes by hand, so I do not think the connectivity is
fundamentally bad.

5. Extensions and Non-template Methods

There are several natural variations on the construction to explore. The first variation is that the surfaces could be
completed in a different way. In particular, perhaps Whisker Weaving or another algorithm could complete the STC
of the diced hex mesh in another way, so that the surfaces do not need to curve so sharply.

A second variation is that the duals could be pushed farther together. In particular, currently every quad face on the
interface gets split into a geode-template. Quality is less than ideal where two interface quads have a small or large
dihedral angle. This can occur even when the meshes are relatively structured; see Figure 9. It would be nice to “round
off” these corners by pushing a dual surface into the opposite dual, so that the dual surface curves less. This method
no longer produces pure templates. Figure 10 shows a two dimensional example of this.

Figure 9. Interface angles affect the quality of the geode-templates. Right, in three-dimensions it may be impossible to create
a buffer layer: Suppose interface node V has six attached interface faces as in the figure. Since no point can see both of S1 and
S2, one of the geode-templates attached to S1 or to S2 must have a non-positive jacobian at V.

Figure 10. Pushing the arrangements so that they overlap further can improve quality, but modifies the pure templates. Left
shows the pure templates. Right shows the result of puffing out two curves so that they are more round. Top shows the primal
mesh, bottom shows the dual curves.
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A third variation is to change the interface mesh: Split each interface quad into four triangles instead of two. The dual
of the triangular mesh is still composed of circles and may be completed into spheres. I speculate that it is
straightforward to carry out the geode-template construction steps. The biggest unknown is whether the resulting
arrangement will dualize to a well-defined hex mesh. If not, then Mitchell[5] and Folwell[2] show how to fix-up the
arrangement, but mesh quality will be poorer.

A fourth variation is to try to transition between two wildly different meshes, say two hex meshes with different
element sizes that do not even conform node-wise. Completing the duals is the same as before. However, I would need
to develop a new algorithm for pushing the duals together in a general way, and in many cases mesh fix-up as in
Mitchell[5] and Folwell[2] would be required.

5.1 Why are Other Templates Hard?

In short, I designed the geode-template to be easy to mesh by keeping the dual curves of the boundary-mesh separate,
so that no curve passes through a quad of both a diced-tri and a diced-quad. I also kept each dual curve simple (non-
self-intersecting). In contrast, consider filling Schneiders’s open problem,[9] Figure 11, with hexahedra. The surface
mesh is identical to the variation of the geode-template with a pre-diced quad divided into four triangles, but without
any sides. This problem, publicized several years ago, was difficult to fill at all, and no good-quality all-hex mesh is
known. Figure 11 right shows the dual curves, one of which self-intersects eight times and passes through every quad
of the boundary mesh. The octahedron has a boundary-mesh whose dual is just that curve.[1]

On the CUBIT project, we have tried several pyramid-like templates. In these examples, unless sides like the geode-
template’s are introduced, the dual curves have a complicated self-intersection structure.

6. Conclusions

I have shown how to topologically conform a diced hexahedral mesh to a diced tetrahedral mesh by inserting an all-
hex transition layer. The general method may be extensible to other transition problems. My results are practical, in
that the algorithm is simple and the template can have good-quality hexes; at SNL, we are currently working on
creating a geometrically-good transition layer for general boundaries.

Some interesting open problems remain. The geode-template indicates that, given the freedom to modify the surface
mesh by dicing and the existence of a buffer layer, most surface meshes admit a well-shaped compatible hexahedral
mesh. What if the surface mesh can not be diced or modified? Note that dicing gives a surface mesh whose node-edge
graph is bipartite, which is sufficient to prove that a conforming hexahedral mesh exists, see Eppstein[1], but there is
no guarantee that a good-quality mesh exists. Without dicing, the interface mesh may be composed of an odd number
of quadrilaterals, which is impossible to fill with hexahedra.[5] Can the extent of dicing or modifying the surface mesh
be limited in practical settings?

The buffer layer arises naturally as the dual of the intersection of the completed STC of the diced-tet-mesh with the
completed STC of the diced-hex-mesh. Certain interface geometries do not admit a well-shaped buffer layer. One

Figure 11. Schneiders’s open problem.[9] No good all-hex mesh for the left figure is known. Center shows the two dual
curves of the surface mesh laid flat. Right shows an underside-view of the problem after dicing the surface mesh; this version
was meshed with the geode-algorithm.



interpretation of this is that the completed STC surfaces must curve too much. Could the STCs be pushed so that they
overlap more, allowing more slowly curving surfaces?
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Appendix A. Mesh Connectivity and Positions

This section describes how to reconstruct the geode-template. The following tables list the node positions and hex
connectivity of a 24 x 14 x 24 geode-template centered at the origin.

Node x y z Node x y z Node x y z

1 -12.0 7.0 12.0 17 12.0 -7.0 0.0 33 3.9 -1.8 -3.6

2 12.0 7.0 -12.0 18 12.0 1.7 5.0 34 -3.9 -1.8 3.7

3 0.0 7.0 0.0 19 12.0 4.5 0.0 35 -4.1 -1.5 -4.1

Table 2: Node positions for a 24 x 14 x 24 geode-template centered at the origin.



4 12.0 7.0 12.0 20 12.0 1.7 -5.0 36 -0.2 4.5 -5.3

5 0.0 7.0 12.0 21 12.0 -7.0 -12.0 37 -8.9 3.9 -6.5

6 12.0 7.0 0.0 22 0.0 -7.0 -12.0 38 -4.3 4.2 -2.3

7 4.6 7.0 4.6 23 5.0 1.7 -12.0 39 0.0 3.5 0.0

8 -12.0 7.0 -12.0 24 0.0 4.5 -12.0 40 4.4 4.3 2.3

9 -12.0 7.0 0.0 25 -5.0 1.7 -12.0 41 8.5 3.9 6.6

10 -12.0 -7.0 -12.0 26 0.0 7.0 -12.0 42 0.2 4.5 5.4

11 -12.0 -7.0 0.0 27 0.0 -7.0 12.0 43 4.1 -1.5 4.2

12 -12.0 1.7 -5.0 28 -5.0 1.7 12.0 44 5.7 0.7 0.7

13 -12.0 4.5 0.0 29 0.0 4.5 12.0 45 2.6 1.4 2.1

14 -12.0 1.7 5.0 30 5.0 1.7 12.0 46 0.0 0.0 0.0

15 -12.0 -7.0 12.0 31 0.0 -7.0 0.0 47 -2.6 1.4 -2.0

16 12.0 -7.0 12.0 32 -4.6 7.0 -4.6 48 -5.6 0.7 -0.6

Hex n1 n2 n3 n4 n5 n6 n7 n8 Hex n1 n2 n3 n4 n5 n6 n7 n8

1 17 20 2 21 31 33 23 22 14 48 13 12 35 34 14 11 31

2 43 18 17 31 44 19 20 33 15 28 27 15 1 34 31 11 14

3 43 30 27 31 18 4 16 17 16 41 5 1 14 42 29 28 34

4 36 24 26 37 33 23 2 20 17 38 32 9 13 39 3 1 14

5 37 26 32 38 20 2 3 39 18 40 7 3 39 41 5 1 14

6 19 6 2 20 40 7 3 39 19 46 39 14 34 45 40 41 42

7 45 40 19 44 46 39 20 33 20 47 38 13 48 46 39 14 34

8 46 39 20 33 47 38 37 36 21 36 24 25 35 37 26 8 12

9 33 23 22 31 36 24 25 35 22 47 38 37 36 48 13 12 35

10 48 47 46 34 35 36 33 31 23 37 26 8 12 38 32 9 13

11 34 46 45 42 31 33 44 43 24 41 5 4 18 40 7 6 19

12 31 22 10 11 35 25 8 12 25 42 41 18 43 45 40 19 44

13 42 29 28 34 43 30 27 31 26 42 29 30 43 41 5 4 18

Table 3: Connectivity of a geode-template: Nodes in hexes.

Node x y z Node x y z Node x y z

Table 2: Node positions for a 24 x 14 x 24 geode-template centered at the origin.
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	Appendix A. Mesh Connectivity and Positions


	1
	-12.0
	7.0
	12.0
	17
	12.0
	-7.0
	0.0
	33
	3.9
	-1.8
	-3.6
	2
	12.0
	7.0
	-12.0
	18
	12.0
	1.7
	5.0
	34
	-3.9
	-1.8
	3.7
	3
	0.0
	7.0
	0.0
	19
	12.0
	4.5
	0.0
	35
	-4.1
	-1.5
	-4.1
	4
	12.0
	7.0
	12.0
	20
	12.0
	1.7
	-5.0
	36
	-0.2
	4.5
	-5.3
	5
	0.0
	7.0
	12.0
	21
	12.0
	-7.0
	-12.0
	37
	-8.9
	3.9
	-6.5
	6
	12.0
	7.0
	0.0
	22
	0.0
	-7.0
	-12.0
	38
	-4.3
	4.2
	-2.3
	7
	4.6
	7.0
	4.6
	23
	5.0
	1.7
	-12.0
	39
	0.0
	3.5
	0.0
	8
	-12.0
	7.0
	-12.0
	24
	0.0
	4.5
	-12.0
	40
	4.4
	4.3
	2.3
	9
	-12.0
	7.0
	0.0
	25
	-5.0
	1.7
	-12.0
	41
	8.5
	3.9
	6.6
	10
	-12.0
	-7.0
	-12.0
	26
	0.0
	7.0
	-12.0
	42
	0.2
	4.5
	5.4
	11
	-12.0
	-7.0
	0.0
	27
	0.0
	-7.0
	12.0
	43
	4.1
	-1.5
	4.2
	12
	-12.0
	1.7
	-5.0
	28
	-5.0
	1.7
	12.0
	44
	5.7
	0.7
	0.7
	13
	-12.0
	4.5
	0.0
	29
	0.0
	4.5
	12.0
	45
	2.6
	1.4
	2.1
	14
	-12.0
	1.7
	5.0
	30
	5.0
	1.7
	12.0
	46
	0.0
	0.0
	0.0
	15
	-12.0
	-7.0
	12.0
	31
	0.0
	-7.0
	0.0
	47
	-2.6
	1.4
	-2.0
	16
	12.0
	-7.0
	12.0
	32
	-4.6
	7.0
	-4.6
	48
	-5.6
	0.7
	-0.6
	Table 2: Node positions for a 24 x 14 x 24 geode-template centered at the origin.

	1
	17
	20
	2
	21
	31
	33
	23
	22
	14
	48
	13
	12
	35
	34
	14
	11
	31
	2
	43
	18
	17
	31
	44
	19
	20
	33
	15
	28
	27
	15
	1
	34
	31
	11
	14
	3
	43
	30
	27
	31
	18
	4
	16
	17
	16
	41
	5
	1
	14
	42
	29
	28
	34
	4
	36
	24
	26
	37
	33
	23
	2
	20
	17
	38
	32
	9
	13
	39
	3
	1
	14
	5
	37
	26
	32
	38
	20
	2
	3
	39
	18
	40
	7
	3
	39
	41
	5
	1
	14
	6
	19
	6
	2
	20
	40
	7
	3
	39
	19
	46
	39
	14
	34
	45
	40
	41
	42
	7
	45
	40
	19
	44
	46
	39
	20
	33
	20
	47
	38
	13
	48
	46
	39
	14
	34
	8
	46
	39
	20
	33
	47
	38
	37
	36
	21
	36
	24
	25
	35
	37
	26
	8
	12
	9
	33
	23
	22
	31
	36
	24
	25
	35
	22
	47
	38
	37
	36
	48
	13
	12
	35
	10
	48
	47
	46
	34
	35
	36
	33
	31
	23
	37
	26
	8
	12
	38
	32
	9
	13
	11
	34
	46
	45
	42
	31
	33
	44
	43
	24
	41
	5
	4
	18
	40
	7
	6
	19
	12
	31
	22
	10
	11
	35
	25
	8
	12
	25
	42
	41
	18
	43
	45
	40
	19
	44
	13
	42
	29
	28
	34
	43
	30
	27
	31
	26
	42
	29
	30
	43
	41
	5
	4
	18
	Table 3: Connectivity of a geode-template: Nodes in hexes.



